
CPU
（central processing unit）

基本情報技術者 第５回

Roots千葉 利用者

長岡昇吾



今回の章の進み方

スライド
①CPUについて

(実際にパソコンに使われているCPUを見てみる)

②コンピュータの５台装置
(CPUの制御、揮発性と不揮発性)

③ノイマン型コンピュータ
(プログラム内蔵方式、逐次方式、アドレス)

④CPUの命令実行手順
(レジスタ、フェッチ、プログラムカウンタ、命令デコーダ)

⑤機械語のアドレス指定方式
(機械語とは、それぞれのアドレス指定方式)

⑥CPUの性能指標
(クロック、CPI、MIPS、命令ミックス)

⑦CPUの高速化技術
(パイプライン処理、CISC、RISC)



CPUについて

CPUとは中央処理装置といわれる部分でコンピュータにおいてマウスやキー
ボードなどの処理を行う部分です。

皆さんのパソコンではシステムなどのあらゆる場所で確認することができま
す(cmd中にwmic cpu list fullと入力してみてください。)



CPUについて

cpuの細かい情報を見ることが可能で
す。
自分のパソコンについて、
皆さんも見てみましょう。

CPUの種類
Intel
・Xeon
・Coreシリーズ(i9,i7,i5,i3) (x86)
・Pentium
・Celeron
AMD
・EPYC
・Ryzen(threadripper,9,7,5)(Zen2)



コンピュータの５台装置

自作パソコンを作る必要なものです。

（中身としてはケースファン、CPU、
グラフィックカード、OS、メモリ、

SSD、電源装置、CPUグリス、
マザーボード、CPUクーラー、ケース）

今回は主に重要なCPU、主記憶装置（メモリ）、補助記憶装置(HDD、SSD)、
入力装置(マウス、キーボード)出力装置(ディスプレイモニター、プリンター)
について説明を行います。



コンピュータの５台装置

入力

書き込み 読み込み

読み込み

出力

主記憶装置

補助記憶装置

入力装置

出力装置

中央処理装置

制御

制御

制御

制御



コンピュータの５台装置

CPU

作業員 机 本棚

メモリ HDD

パソコン内における役割を簡単に表すと

メモリは揮発性のものを使っているため電源を切ると中のデータが飛んでし
まうため、保存ボタンによって内容をHDDやSSDに保存する。



ノイマン型コンピュータ

ノイマン型コンピュータとは、プログラムをデータとして記憶装置に格納し、これ
を順番に読み込んで実行するコンピュータのことです。

ジョン・フォン・ノイマンが提唱したコンピュータの基本構成である。
(計算手順や入力値をハードウェアから独立させて、外部からデータを入れ
て処理する方式を考え出した)



ノイマン型コンピュータ

データは基本的にHDDに
蓄えられている 必要なプログラムを入れて

おく

プログラム内蔵方式 逐次制御方式

プログラムを命令に分けて
順番に処理する

プログラム プログラム

命令１

命令２



ノイマン型コンピュータ

主記憶装置にはプログラム以
外にも処理中の計算結果など

が格納されています。

CPUが演算するのにどこにどの
データが入っているか分から
なくては…

0000

0001

0002

0003

…

FFFF

アドレス メモリ空間



CPUの命令実行手順

CPUの構造

バス
インターフェース

制御ユニット

浮動小数点
演算ユニット(FPU)

整数演算
ユニット(ALU)

デコーダフェッチユニット

キャッシュメモリ

パッケージ

ダイ

・バスインターフェース ・・・ データのやり取りをする伝送路(内部バスと外部バス)

・キャッシュメモリ ・・・ バスインターフェースから受け取ったデータを格納しておく場所

・フェッチユニット ・・・ メモリ上の命令を外部バスインターフェースを通じて制御ユニットに読み込む

・デコーダ ・・・ フェッチユニットでフェッチされた命令を具体的な情報に解説する部分

・演算装置(制御ユニット、浮動小数点演算ユニット、整数演算ユニット) ・・・演算を行う部分
・レジスタ ・・・ 途中経過などを保管しておいたり、メモリのアドレスを示したりする場所

ピン

レジスタ

は演算装置 は制御装置※



CPUの命令実行手順

名称 役割

プログラムカウンタ 次に実行するべき命令が入っているアドレスを記憶す
るレジスタ

命令レジスタ 取り出した命令を一時的に記憶するためのレジスタ

インデックスレジス
タ

アドレス修飾に用いるためのレジスタで、連続した
データの取り出しに使うための増分値を保持する。

ベースレジスタ アドレス修飾に用いるためのレジスタで、プログラム
の先頭アドレスを保持する。

アキュムレータ 演算の対象となる数や、演算結果を記憶するレジスタ

汎用レジスタ 特に機能を限定していないレジスタ。一時的な値の保
持や、アキュムレータなどの代用に使ったりする。



CPUの命令実行手順

汎用レジスタ 命令レジスタ

プログラムカウンタ

命令デコーダ

汎用レジスタ

汎用レジスタ

汎用レジスタ

ALU

CPU

命令を一時的に記憶

次に実行するアドレスを
記憶

命令レジスタの命令
を解読

特に機能を設けていない、一時的な
値の保持やアキュムレータの代わり

乗算や除算、余剰などの計算を行う



CPUの命令実行手順

汎用レジスタ 命令レジスタ

プログラムカウンタ

命令デコーダ

汎用レジスタ

汎用レジスタ

汎用レジスタ

ALU

CPU

命令の取り出し(フェッチ)

・
・
・

メモリ

001
002
003
004

FFF

１

１．プログラムカ
ウンタの値を見る

２

２．メモリからプログラムカウンタ内の
アドレスの命令を入れる

３

３．プログラムカウンタを次の命令
の入っているメモリの値にする



CPUの命令実行手順

汎用レジスタ 命令レジスタ

プログラムカウンタ

命令デコーダ

汎用レジスタ

汎用レジスタ

汎用レジスタ

ALU

CPU

命令部 オペランド部

命令レジスタ

対象となるデータの
在処などが書いてある
(メモリアドレスなど)

２

１．命令レジスタ中の命令部
を命令デコーダに送る

２．ALUなどの演算装置に
命令を送っている

命令の解読



CPUの命令実行手順

汎用レジスタ 命令レジスタ

プログラムカウンタ

命令デコーダ

汎用レジスタ

汎用レジスタ

汎用レジスタ

ALU

CPU

命令部 オペランド部

命令レジスタ

・
・
・

メモリ

001
002
003
004

FFF

１．オペランド部の示す
データを見る

２．汎用レジスタなどに対象
となるデータを入れておく

対象データ(オペランド部)読み出し



CPUの命令実行手順

汎用レジスタ

命令レジスタ

プログラムカウンタ

命令デコーダ

汎用レジスタ

汎用レジスタ

汎用レジスタ

ALU

CPU

１
２

１．汎用レジスタなどに格納され
たデータを演算装置に読み込む

２．演算結果を汎用レジスタなど
に書き戻す

命令実行

命令の取り出し
(フェッチ)

命令の解読

対象データ読み出し

命令実行

CPUの命令実行手順

繰り返し



機械語のアドレス指定方式

機械語

機械語とは、１と０で出来たコンピュータが理解できる命令語となります。
人は理解できないので、下のように理解できる形に持っていきます。
機械語→アセンブリ言語(アセンブラ)→C言語

オペランド部は対象データの在処を示しているため、命令レジスタでの命令は
「何を(オペランド部)どうしろ(命令部)」となる事が分かる。
ただ、オペランド部に入る対象はメモリのアドレスだけではない。
そのため、この後のスライドで幾つか説明する。

スライドでは…



機械語のアドレス指定方式

即値アドレス指定方式

命令部 オペランド部

命令レジスタ

数値(100)

・
・
・

メモリ

001
002
003
004

FFF

オペランド部に値が入っており、
メモリを参照する必要がない

命令部 オペランド部

命令レジスタ

・
・
・

001
002
003
004

FFF

メモリ

実効アドレス
(004)

直接アドレス指定方式

オペランド部にメモリの
アドレスが入っており、
アドレスに対応したメモリ
のデータを呼ぶ



機械語のアドレス指定方式

間接アドレス指定方式

命令部 オペランド部

命令レジスタ

200

001
002
003
004

FFF

メモリ

データ200

・
・
・

・
・
・

アドレス(004)

オペランド部のアドレスを参照してメモリを見た際に、
対象となるデータが入っているメモリアドレスを指し
示しているため、間接的にデータを呼ぶ



機械語のアドレス指定方式

インデックス(指数)アドレス指定方式

命令部 オペランド部

命令レジスタ

3

アドレス(100)

インデックスレジスタ番号

データ

001

110

FFF

メモリ

データ116

・
・
・

・
・
・

・
・
・

データ122
・
・
・

データ128
・
・
・

・
・
・

インデックスレジスタ

10

001

003
・
・
・

・
・
・

100＋10
=110
なので

オペランド部のインデックスレジスタ番号を見て、インデックスレジスタを参照する。
インデックスレジスタ内の数字とオペランド部の数字を足したものを、実効アドレス
とする。
その後、インデックスレジスタ内の数値を増幅させることで等間隔に並ぶアドレスに
同じ命令を繰り返し行うことができる。(配列型のデータ処理で使われる)

10‥16‥22‥28‥‥



機械語のアドレス指定方式

ベースアドレス指定方式

命令部 オペランド部

アドレス(50)

001
002
003
004

FFF

メモリ

データ200

・
・
・

・
・
・

150
ベースレジスタ

命令レジスタ

50＋150
=200
なので

150
・
・
・

ベースレジスタ
はプログラムの
先頭のアドレス

オペランド部に、ベースレジスタの値を加算した数字を実効アドレスとする。
ベースレジスタはメモリ上にプログラムを入れた、ときの先頭部分である。
プログラムがどこにいても命令を変えなくて済む



機械語のアドレス指定方式

相対アドレス指定方式

命令部 オペランド部

アドレス(50)

001
002
003
004

FFF

メモリ

データ200

・
・
・

・
・
・

150
プログラムカウンタ

命令レジスタ

50＋150
=200
なので

150
・
・
・

次に実行される
アドレス

プログラムカウンタの値とオペランド部の値を加算したものを実効アドレスとする。
プログラムカウンタに入っているのは次に命令レジスタに送られるアドレスである。
ベースアドレス指定方式と同様にどこにロードされても大丈夫



CPUの性能指標

パソコンを購入もしくは作成する際に重要な物の１つであるCPUの性能について、
指標をもとに考えてみます。

CPU性能比較表【2022年最新版】
| PC自由帳 (pcfreebook.com)

https://pcfreebook.com/article/450856544.html


CPUの性能指標

実はCPUやコンピュータの装置はクロックと呼ばれる周期的な信号に合わせて
動くようにできています。
(Dラッチ回路はクロックが立ち上がった時に入力を出力に反映する)

先に順序理論回路の説明をします。
理論回路で計算やビット反転についての考え方を勉強したと思います。
理論回路を組み合わせたもので過去の入力や初期値によって影響を受ける回路を
順序理論回路といいます。

RSフリップフロップ

CLK

IN
OUT

Q
D

Dラッチ



CPUの性能指標

1クロック
＝1周期

先ほどのDラッチを考えてみま
しょう

D

CLK

Q

Qに注目するとクロックに合わせて動いている事が分かると思います。
CPUも同じようにクロックに合わせて命令を処理しています。
(人間でいうところの脈みたいですね…)

このクロックが１秒間に繰り返される回数のことをクロック周波数といい
ます。単位はHz(ヘルツ)
例えば、１GHzのクロック周波数は109回チクタク繰り返していることにな
ります。



CPUの性能指標

ところで、1クロックにかかる時間につい
て考えてみましょう。

２Hzは1秒間に２回クロックしたと言い換えられます。

つまり、逆数を取れば所要時間を算出できる事になります。
(最近では3GHz～4GHzのCPUもありますから相当速いことがわかるでしょう)

次にCPUに命令を流した時を考えてみましょう…

命令が入って来るとCPUはクロックに合わせて動いているので…
１命令に何クロックでうごくのかと考えることができます。

この、何クロックで命令を行うかをCPI(Clock cycles per instruction)といいます

CPI

CLK

１命令 １命令



CPUの性能指標

実はCPUによって同じような処理をするのにかかるクロック数が異なる。
そのため、異なるアーキテクチャ(後記)のCPUを比較する場合ベンチマークの
スコアなどを使う

MIPS(Million Instructions Per Second)

1秒間に実行できる命令の数を表したものです。
数字が大きくなりがちなので百万単位であらわしております。

実際にどれくらい早く処理ができるかがこの値によって分かります。
(ただし、アーキテクチャが同じ場合)

命令ミックス

命令によって、クロックサイクル数が異なっているので、よく使われ
る命令をひとつのセットにしたものです。
(MIPSでCPUの性能差を見れるように)



CPUの高速化技術

パイプライン処理

命令の取り出し
(フェッチ)

命令の解読

対象データ読み出し

命令実行

繰り返し

プログラムカウンタ→命令レジスタ

命令レジスタ(命令部)→命令レコーダ

汎用レジスタ→演算装置

命令レジスタ(オペランド部)→汎用レジスタ

複数の処理をクロックに沿って一つづつ行っていくと、1クロックで
動作していない場所ができるので非効率に感じる



CPUの高速化技術

パイプライン処理

F D O E F D O E F D O

F D O E F D O E F D

F D O E F D O E F

F D O E F D O E

F：命令の取り出し
D：命令の解読
O：対象データ読み出し
E：命令実行

1つずつずらして処理すると並列で上図のように数クロックごとに4つの
動作をすることができるこれをパイプライン処理という



CPUの高速化技術

分岐予測と投機事項

先ほどのパイプライン処理の際に命令の分岐があった場合、分岐先の命令がどち
らか確定するまで処理が開始出来なくなってしまうこれはパイプライン処理に
とっては困ったこととなる。

命令１

命令２

命令３

どっち？

命令１

命令２

命令３
こっちかな

そのため、待ち時間を発生させないために次の命令を予測しておくことを分岐予測
といいます。
その予測に基づいて無駄になってしまうかもわからない状態で分岐先の命令を実行
開始する手法が投機実行です。

また、先読みが無駄になってしまうことを(分岐ハザード)といいます。



CPUの高速化技術

CISCとRISC(アーキテクチャ)

アーキテクチャとはCPUの基本設計です。
例としては、intelのx86やAMDのZenアーキテクチャ、組み込み式アーキテクチャ
のArmなどがあります。
これらのアーキテクチャにはCISCやRISCと言った考え方の違いによって種類分け
されている。

・ひとつの命令で複雑な処
理をできる
・命令の長さや実行速度が
バラバラ
・機械語のプログラム作成
が楽

CISC

・単純な命令ののみで構成
・命令の長さがほとんど一
緒
・機械語のプログラム作成
は難しい

RISC

Armアーキテクチャ
(富岳、スマートフォンなど)

Intelのx86
AMDのzenアーキテクチャ

パイプライン処理の恩
恵を受けにくい

パイプライン処理の恩
恵を受けやすい



CPUの高速化技術

スーパーパイプラインとスーパースカラ

スーパーパイプライン

F D

O E

f1 f2 f3 d1 d2 d3

o1 o2 o3 e1 e2 e3

それぞの命令を細かくすることで
並列で処理できる範囲を増やして、
幾つもの命令を処理する

スーパースカラ

F D O E F D O E F D O

F D O E F D O E F D

F D O E F D O E F D

F D O E F D O E F D O

パイプライン処理を行う回路を複数持
たせることで全く同時に複数の命令を
実行できるようにしたもの


