
プログラムと
アルゴリズム

担当：新田

Information Technology
PassportEx

ami
nat
ion

コンピュータ言語

人間がコンピュータに処理を指示するための言語

• プログラミング言語
コンピュータに対して命令を与えるための言語
アプリケーションやシステムの開発に使用される
例） Java、 Python、 C言語、 JavaScript

• マークアップ言語
文書の構造や内容を記述するための言語
タグ<>を使用して文書の構造をマークする
例） HTML、 XML

• スタイルシート言語
文書の表示やレイアウトを定義するための言語
例） CSS

• クエリ言語
データベースを操作するための言語
例） SQL（MySQL、 PostgreSQL、 Oraｃle)

01101001
01011010
11010110
10100101

機械語（マシン語）

• コンピュータ自身が命令を直接理解し、実行することができる

• 0と1の二進数で表現される

• コンピュータ内では0と1という情報をパルスとして回路内で伝送し、

演算処理を行う

• 記憶装置では記憶素子の状態が0と1に対応してデータを記録する

• 人間が理解するのは至難の業！

コンピュータは0と1の世界

↑16進数に変換されたもの

低水準言語

LD A, B
ADD A, B
CLR B

• 機械語を人間が扱いやすい形式で記述したもの
• 機械語とアセンブリ言語は１対１で対応
• CPUやメモリを操作ができるため、実行速度が速い
• 便利な制御構文や処理がアセンブリ言語にはないため

すべて自分で記述する必要がある
• ハードウェアやメモリー管理の知識が不可欠
• 移植性が低く、コーディングが複雑で生産性は低い

ロード命令
加算命令
クリア命令

プログラム初心者に
とっては習得
難易度が高め

アセンブリ

高水準言語

• 人間が理解しやすいように作られた言語
• 低水準言語よりも可読性に優れ、短時間でコードを書

くことができる
• ハードウェアの深い知識が必要ない
• 実行速度は低水準言語よりも遅い

人間が読める
ソースコード

機械語

変換する

高水準言語のプログラム（ソースコード）を機械語に変換することを
コンパイル、 この変換作業を行うソフトウェアをコンパイラ

コンパイル型言語

• プログラムの実行前にソースコードをまとめて機械語に翻訳する。

• インタプリタ型より高速に処理が可能。

• 実行するたびにすべてのコードをコンパイルする必要があるため、
テスト作業に時間がかかる。

例） Java、 C/C++、 C#、 Go、 Rust

インタプリタ型言語

• プログラムの実行時にコードを１行ずつ機械語に翻訳する。

• １行ずつ実行できるため、開発やテスト作業が迅速にできる。

• 実行速度やメモリ使用量ではコンパイラ型に劣る。

例） Python、 JavaScript、 Ruby、 PHP

アルゴリズム

ある特定の問題を解く手順を、単純な計算や操作の組み合わせとして
明確に定義したもの

• 探索アルゴリズム

• ソートアルゴリズム

• 暗号化アルゴリズム

• 機械学習アルゴリズム など

この手順を
人が理解しやすいように図にしたものがフローチャート（流れ図）
コンピューターに行わせるために記述したものがプログラム
プログラミング言語で記述されたプログラムをソースコード

アルゴリズムの基本構造

複雑なアルゴリズムも、基本構造の組み合わせから成る。

順次構造

ひとつの処理が終わったら次の処理に進む

号令

起立

礼

授業開始

着席

分岐構造

条件に基づいて実行する内容を変える

開始

雨が降って
いる

傘を持っていく

出かける

外の天気を確認

YES

NO

反復構造

一定の条件を満たすまで処理を繰り返す

開始

ガチャを引く

終了

当たりを引くまで

疑似言語
• 擬似的なプログラミング言語で、一般的に使われる記述法を交えつつ、

アルゴリズムの理解を助けるために用いられる。

• ITパスポート・基本情報技術者試験独自のものがある。

• 仕様書が添付されている。

public class HelloWorld
{

public static void main(String[] args){
System.out.println("Hello, World!");

}
}

#include <stdio.h>
int main(void){

printf("Hello, World!¥n");
return 0;

}

print("Hello, World!")

<?php
echo "Hello, World!";
?>

document.writeln('Hello, World!');
int main(int argc, const char * argv[]) {

@autoreleasepool {
NSLog(@"Hello, World!");

}
return 0;

}

class HelloWorldApp
{

static void Main() {
System.Console.WriteLine("Hello, World!");

}
}

puts "Hello, World!"

実際のプログラミング言語↓

https://www.ipa.go.jp/shiken/syllabus/doe3um
0000002djj-att/shiken_yougo_ver5_1.pdf

https://www.ipa.go.jp/shiken/syllabus/doe3um0000002djj-att/shiken_yougo_ver5_1.pdf
https://www.ipa.go.jp/shiken/syllabus/doe3um0000002djj-att/shiken_yougo_ver5_1.pdf

基本情報技術者試験(科目B)の擬似言語シミュレータ(beta版)

https://gijigengo.b-rain.jp/

一部機能は未実装だが、試験とほぼ同じ書き方で処理を再現できる。

https://gijigengo.b-rain.jp/

基礎知識

変数

• 数字や単語などのデータを入れておく箱。

• 箱には名前を付ける（ルールあり）。

命令文

"ABC"

"あいうえお"

12345
1.4142

x ← 12

xには12が格納される

False

箱に入れるイメージ

配列[]

型

変数に入れることのできるデータの種類を指定する

• 整数型（Integer等) 1, 2, 10, -196, 123456

• 実数型（Double等) 3.14, 44.5, 100.00

• 文字列型（String） “ABC”, “HELLO”, “あいうえお”

• 論理型(Boolean） true, false

配列

データをまとめて扱うデータ構造の1つ

同じデータ型の複数の値を１つの変数にまとめることができる

目的のデータが何番目にあるかを指定することで、データを取り出せる

※一般的に、配列の先頭は0

nameList = {‘田中’, ‘佐藤’, ‘鈴木’}

インデックス

nameList[0] ・・・‘田中’を指定

プログラミングにおける関数

• 卵を１個割る

• ご飯の上にのせる

• 醤油をかける

卵かけご飯を
作る関数

与えられた値（引数）をもとに、定められた独自の処理を実行し、
その結果を返す命令のこと

与えられた値
（引数）

処理の
結果

定められた処理を繰り返し利用することができる

疑似言語の流れ図

文字列型: familyName, firstName //変数を宣言

整数型: age

familyName ← “田中” //変数に値を代入

firstName ← “太郎”

age ← 20

familyName を出力する

firstName を出力する

age ← age + 1

age を出力する

出力結果：

田中

太郎

21

//や /* */はコメントアウト

いわゆる注釈 処理には影響しない

疑似言語の関数

○整数型： 関数calcTax (整数型: yen） //関数の宣言

 整数型： total

total ← yen × 1.1

return total //戻り値

※引数は複数ある場合、１つもない場合もある

出力結果：1100

○戻り値の型 : 関数○○○（引数の型：変数, ・・・・）

return △△
関数名

関数の使い方

整数型： fee
fee ← calcTax （1000）
fee を出力する

戻り値

頻出パターン

○○のとき～、それ以外のとき～

if (条件)

処理

else

処理

endif

VBA

If 条件 Then

処理

Else

処理

End If

Java

If（ 条件){

処理

}else{

処理

}

Python

if 条件:

 処理

else:

 処理

条件を満たすときと満たさないときで

処理を分岐させるアルゴリズムは多い！

○○のときはずっと繰り返す

while (条件）

処理

endwhile

VBA

Do while 条件

処理

Loop

Java

while(条件){

処理
}

Python

while 条件：

 処理

処理

条件 ※繰り返し処理を終了

できない（条件を満た

し続けてしまう）場合、

無限ループに陥り、フ

リーズや暴走を引き起

こす。

○○回繰り返しする

for (i を 1から ○○まで1ずつ増やす）

処理

endfor

VBA

For i = 1 To ○○

処理

Next i

Java

ｆor(int i = 1; i <=○○; i++){

処理

}

Python

ｆor i range in (1, ○○+1）:

 処理

※このときの i をカウンタと呼ぶ

処理

○回繰り返す

○と△を入れ替える

整数型: buf, a, b

a ← “りんご”

b ← “みかん”

buf ← a ・・・ ①

a ← b ・・・ ②

b ← buf ・・・ ③

別の変数に一時的に預けておく。

値をコピーしていき、入れ替える。

①

②

③

buf

buf

buf

buf

a

a

a

a

b

b

b

b

トレース表

流れ図（フローチャート）の経路を追いながら、変数の値が処理の過程
でどのように変化していくかをまとめた表

整数型: m ← 1

整数型: n ← 3

m ← m + 1 ・・・ ①

n ← m ・・・ ②

m ← m + n ・・・ ③

m n

初期値 1 3

① 2 3

② 2 2

③ 4 2

トレース表

i totalValue

初期値0
1から7まで
1ずつ増やす

トレース表

i totalValue

1 0

2 0

3 0 + 3 = 3

4 ３

5 ３

6 3 + 6 = 9

7 ９

初期値0
1から7まで
1ずつ増やす

トレース表

気を付けたいポイント

境界値
ある範囲の最小値または最大値など
の同値分割した領域の端にあたる値

① ② ③ ④ ⑤ ⑥

a番目から b番目までの人数（a<b) ・・・・ b - a ＋ 1

a番目と b番目の人に挟まれている人数（a<b) ・・・・ b - a － 1

その数自体を含む、含まない場合によって、
＋１ や -1といった調整が必要！！

要素が１から始まる配列： arr

整数型: i, arrLen //arrの長さ（要素の数）

arr ← {“いちご”, “ぶどう”, “みかん”, “りんご”, “なし”, “すいか”}

for (i を １ から arrLen まで1ずつ増やす ）

arr [i] を出力する

endfor

“いちご” “ぶどう” “みかん” “りんご” “すいか”“なし”

２ ３ ４ ５ ６１

arr

要素の数は ６なので、

要素番号は 1から6まで

要素が0から始まる配列： arr

整数型: i, arrLen //arrの長さ（要素の数）

arr ← {“いちご”, “ぶどう”, “みかん”, “りんご”, “なし”, “すいか”}

for (i を 0 から arrLen － 1 まで1ずつ増やす ）

arr [i] を出力する

endfor

“いちご” “ぶどう” “みかん” “りんご” “すいか”“なし”

1 2 3 4 5０

arr

要素の数は ６なので、

要素番号は 0から５まで

a[arrLen] すなわち a[6]を呼びだそうとすると、定義されていないので、エラーになる

条件

① ② ③ ④ ⑤ ⑥

この順番が身長順だった場合

a番目より身長が低い人数 ・・・・・ 0 ～ a -1

a番目以下の身長の人数 ・・・・・ a - 1 ～ 全人数 - 1

○○より小さい ○○以下

○○より大きい ○○以上

値が等しいケースをどのように扱うか

全員同じ身長
の場合がある

等しいときを含まない （○○より大きい）

整数型: a

a ← 3

while (a が 0 より大きい）

a ← a － 1

endwhile

a を出力する

a > 0

ループ a

初期値 3

1回目 2

2回目 1

3回目 0

出力結果： 0

0は条件を満たさない

等しいときを含む （○○以上）

整数型: a

a ← 3

while (a が 0 以上 ）

a ← a － 1

endwhile

a を出力する

a ≧ 0

ループ a

初期値 3

1回目 2

2回目 1

3回目 0

４回目 -1

出力結果：- 1

0は条件を満たす

ある施設の入場料は0歳から5歳までは無料、６歳から11歳までは300円、１２歳以上
は500円である。 関数feeは、年齢を表す0以上の整数を引数として受け取り、戻り値と
して入場料を返す。

〇整数型： fee (整数型: age）

整数型: ret

if (ageが ① のとき）

ret ← 0

elseif（ ageが ② のとき)

ret ← 300

else

ret ← 500

endif

return ret

パターンA

① ０以上5以下 ②6以上11以下

パターンB

① 0以上6未満 ②6以上12未満

パターンC

① ５以下 ②11以下

パターンD

① 6未満 ②12未満

パターンE

① 0, 1, 2, 3, 4, 5 ② ６, 7, 8, 9, 10, 11

ある施設の入場料は0歳から5歳までは無料、６歳から11歳までは300円、１２歳以上
は500円である。 関数feeは、年齢を表す0以上の整数を引数として受け取り、戻り値と
して入場料を返す。

〇整数型： fee (整数型: age）

整数型: ret

if (ageが ① のとき）

ret ← 0

elseif（ ageが ② のとき)

ret ← 300

else

ret ← 500

endif

return ret

パターンA

① ０以上5以下 ②6以上11以下

パターンB

① 0以上6未満 ②6以上12未満

パターンC

① ５以下 ②11以下

パターンD

① 6未満 ②12未満

パターンE

① 0, 1, 2, 3, 4, 5 ② ６, 7, 8, 9, 10, 11

すべて正解！！

境界値テスト

「◯◯以上」や「◯◯未満」などの値の境界となるところをテストする

ある施設の入場料は0歳から5歳までは無料、６歳から11歳までは300円、１２歳以上は500円である。

関数feeは、年齢を表す0以上の整数を引数として受け取り、戻り値として入場料を返す。

境界前後で正しい結果を返す ⇒ すべての条件で正しいことが期待される！

※厳密には最小値・最大値の境目もテストする。

-1, 0, 人の最大の年齢を150歳とすると、 150, 151

ここから実践問題

次のプログラムを実行すると出力されるのは？

整数型: x ← 1

整数型: y ← 2

整数型: z ← 3

x ← y

y ← z

z ← x

ｙの値と zの値をカンマ区切りで出力する

次のプログラムを実行すると出力されるのは？

整数型: x ← 1

整数型: y ← 2

整数型: z ← 3

x ← y ・・・・ ①

y ← z ・・・・ ②

z ← x ・・・・ ③

ｙの値と zの値をカンマ区切りで出力する

ｘ y z

初期値 1 2 3

①

②

③

次のプログラムを実行すると出力されるのは？

整数型: x ← 1

整数型: y ← 2

整数型: z ← 3

x ← y ・・・・ ①

y ← z ・・・・ ②

z ← x ・・・・ ③

ｙの値と zの値をカンマ区切りで出力する

ｘ y z

初期値 1 2 3

① 2 2 3

② 2 3 3

③ 2 3 2

出力結果：3, 2

関数 calcMean は要素数が1以上の実数型の一次元配列 dataArrayを引数
として受け取り、要素の値の平均値を戻り値として返す。

○実数型: calcMean (実数型の一次元配列： dataArray)

実数型: sum, mean

整数型: i

for (i を1 から dataArrayの要素数まで1ずつ増やす）

sum ← ①

endfor

mean ← ②

return mean

①の候補

A. i

B. dataArray[i]

C. sum + i

D. sum + dataArray[i]

②の候補

A. sum × dataArrayの要素数

B. sum ÷ dataArrayの要素数

C. mean × dataArrayの要素数

D. mean ÷ dataArrayの要素数

関数 calcMean は要素数が1以上の実数型の一次元配列 dataArrayを引数
として受け取り、要素の値の平均値を戻り値として返す。

○実数型: calcMean (実数型の一次元配列： dataArray)

実数型: sum, mean

整数型: i

for (i を1 から dataArrayの要素数まで1ずつ増やす）

sum ← ①

endfor

mean ← ②

return mean

①の候補

A. i

B. dataArray[i]

C. sum + i

D. sum + dataArray[i]

②の候補

A. sum × dataArrayの要素数

B. sum ÷ dataArrayの要素数

C. mean × dataArrayの要素数

D. mean ÷ dataArrayの要素数

関数 calcMax は要素数が1以上の実数型の一次元配列 dataArrayを引数と
して受け取り、要素の最大値を戻り値として返す。

○実数型: calcMax (実数型の一次元配列： dataArray)

実数型: max

整数型: i

for (i を1 から dataArrayの要素数まで1ずつ増やす）

if (① ）

max ← dataArray[i]

endif

endfor

return max

①の候補

A. i が dataArray[i] より小さいとき

B. i が dataArray[i] より大きいとき

C. max が dataArray[i] より小さいとき

D. max が dataArray[i] より大きいとき

関数 calcMax は要素数が1以上の実数型の一次元配列 dataArrayを引数と
して受け取り、要素の最大値を戻り値として返す。

○実数型: calcMax (実数型の一次元配列： dataArray)

実数型: max

整数型: i

for (i を1 から dataArrayの要素数まで1ずつ増やす）

if (① ）

max ← dataArray[i]

endif

endfor

return max

①の候補

A. i が dataArray[i] より小さいとき

B. i が dataArray[i] より大きいとき

C. max が dataArray[i] より小さいとき

D. max が dataArray[i] より大きいとき

関数 frameStar は１文字以上の任意の全角の文字列 inputを引数として受け取り、その文字列
の周りを”★”で囲んで表示する。

inputは1行で表示が可能かつ、文字の幅は全て等しいものとする。

〇 関数 frameStr (文字列型 : input)

整数型： inputLength // inputの文字数

整数型： i

for (i が1から ① まで １ずつ増やす ）

“★”を表示する

endfor

改行する

“★”を表示する

inputを表示する

“★”を表示する

改行する

for (i が1から ① まで １ずつ増やす ）

“★”を表示する

endfor

★★★★★★★
★あいうえお★
★★★★★★★

例）あいうえお ⇒

①の候補

A. inputLength - 1

B. inputLength

C. inputLength + 1

D. inputLength + 2

関数 frameStar は１文字以上の任意の全角の文字列 inputを引数として受け取り、その文字列
の周りを”★”で囲んで表示する。

inputは1行で表示が可能かつ、文字の幅は全て等しいものとする。

〇 関数 frameStr (文字列型 : input)

整数型： inputLength // inputの文字数

整数型： i

for (i が1から ① まで １ずつ増やす ）

“★”を表示する

endfor

改行する

“★”を表示する

inputを表示する

“★”を表示する

改行する

for (i が1から ① まで １ずつ増やす ）

“★”を表示する

endfor

★★★★★★★
★あいうえお★
★★★★★★★

例）あいうえお ⇒

①の候補

A. inputLength - 1

B. inputLength

C. inputLength + 1

D. inputLength + 2

関数 isPalindrome は１文字以上の任意の文字列 strを引数として受け取り、その文字列が
回文のときは’YES’、回文でないときは’NO’という文字列を戻り値として返す。

〇 isPalindrom（文字列型: str）

整数型: n ← 1

整数型: strLen ← str の文字列の長さ

文字列型: judge ← ‘YES’

while (①)

if （ ② ）

judge ← ‘NO’

endif

ｎ ← n + 1

endwhile

return judge

関数 isPalindrome は１文字以上の任意の文字列 strを引数として受け取り、その文字列が
回文のときは’YES’、回文でないときは’NO’という文字列を戻り値として返す。

〇 isPalindrom（文字列型: str）

整数型: n ← 1

整数型: strLen ← str の文字列の長さ

文字列型: judge ← ‘YES’

while (①)

if （ ② ）

judge ← ‘NO’

endif

ｎ ← n + 1

endwhile

return judge

解答例

① ｎ が ｓｔｒＬｅｎ/２（切り捨て） 以下のとき

②strの n番目の文字と ｓｔｒの (strLen＋1-n)番目
の文字が等しくないとき

プログラミング能力・アルゴリズムの理解度を測るには

paiza転職のスキルチェックがおすすめ！！
https://paiza.jp/career

自分のレベルに合わせてトライできる！！

https://paiza.jp/career

一度は確認したいアルゴリズム

• 並び替え（ソート）
• バブルソート
• 選択ソート
• 挿入ソート
• クイックソート
• マージソート
• ヒープソート

• 探索（サーチ）
• 線形探索
• 二分探索

• その他
• FizzBuzz問題

• ユークリッドの互除法に
よる最大公約数算出

参考URL

• 【ITパスポート試験】 情報処理推進機構

https://www3.jitec.ipa.go.jp/JitesCbt/index.html

• ふっくゼミ アルゴリズム補講 基本編

https://xn--tpto73d.jp/mobile/movie/ar

• アルゴリズムとは何か～ 文系理系問わず楽しめる精選 6 問 ～

https://qiita.com/drken/items/f909b79ee03e679c7142

• 【Unity】ソートアルゴリズム12種を可視化してみた

https://qiita.com/r-ngtm/items/f4fa55c77459f63a5228

• paiza転職 プログラミングスキルチェック

https://paiza.jp/challenges/info

https://www3.jitec.ipa.go.jp/JitesCbt/index.html
https://福嶋.jp/mobile/movie/ar
https://qiita.com/drken/items/f909b79ee03e679c7142
https://qiita.com/r-ngtm/items/f4fa55c77459f63a5228
https://paiza.jp/challenges/info

	スライド 1
	スライド 2: コンピュータ言語
	スライド 3: コンピュータは0と1の世界
	スライド 4: 低水準言語
	スライド 5: 高水準言語
	スライド 6
	スライド 7: コンパイル型言語
	スライド 8: アルゴリズム
	スライド 9: アルゴリズムの基本構造
	スライド 10: 順次構造
	スライド 11: 分岐構造
	スライド 12: 反復構造
	スライド 13: 疑似言語
	スライド 14
	スライド 15
	スライド 16: 基礎知識
	スライド 17: 変数
	スライド 18: 型
	スライド 19: 配列
	スライド 20: プログラミングにおける関数
	スライド 22: 疑似言語の流れ図
	スライド 23: 疑似言語の関数
	スライド 30: 頻出パターン
	スライド 31: ○○のとき～、それ以外のとき～
	スライド 32: ○○のときはずっと繰り返す
	スライド 34: ○○回繰り返しする
	スライド 35: ○と△を入れ替える
	スライド 36: トレース表
	スライド 37
	スライド 38
	スライド 39: 気を付けたいポイント
	スライド 40
	スライド 41
	スライド 42
	スライド 43
	スライド 44: 等しいときを含まない　（○○より大きい）
	スライド 45: 等しいときを含む　（○○以上）
	スライド 46
	スライド 47
	スライド 48: 境界値テスト
	スライド 49: ここから実践問題
	スライド 50
	スライド 51
	スライド 52
	スライド 53
	スライド 54
	スライド 55
	スライド 56
	スライド 57
	スライド 58
	スライド 59
	スライド 60
	スライド 61
	スライド 63: 一度は確認したいアルゴリズム
	スライド 64: 参考URL

